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This paper is concerned with the convergence rates of two processes {A,} and
{B,}. under the assumption that IIA, II = O( I) and there is a closed operator A such
that B,AcAB,=/-A" IIAA,II=O(e(IX», and B:x·=<p(IX)x· for x·ER(A)~,

where e(lX) --+ 0 and 1<p(IX)I --+ OCJ. It was previously proved that {A,} converges
strongly on N(A)Ef)R(A) to P, the projection onto N(A) along R(A), and
{B,} converges strongly on A(D(A)nR(A)) to AI" the inverse operator of
Al = A I R(A ). In this paper, the two processes are shown to be saturated with
order O(e(IX», and their saturation classes are characterized. The result provides a
unified approach to convergence rates for many particular mean ergodic theorems
and for various methods of solving the equation Ax = y. We discuss in particular
applications to integrated semigroups, cosine operator functions, and tensor
product semigroups. 1993 Academic Press, Inc.

1. INTRODUCTION

The mean ergodic theorem with rates, due to Butzer and Westphal
[3,4], for Cesaro means of powers of a power-bounded linear operator T
on a Banach space X states that for x E Xo := N(I - T) EB R(I - T) one has
Iln-1L~:~Tkx-Pxll=O(I/n) [resp, o(l/n)] (n-+oo) if and only if
x E N(l- T) EB [(I - T) R(I - T)];o Crespo x E N(l- T)]. Here P denotes
the projection on N(I - T) parallel to R(l- T), and [Y];o means the com
pletion of a Banach subspace Y of X o relative to X o • Analogous results for
Abel means of {Tn} as well as for means of a (Co)-semigroup of operators
were also obtained in [3,2].

Recently, we formulated [12-14] a fairly general form of abstract mean
ergodic theorem (see Theorem A), which not only subsumes many par
ticular mean ergodic theorems, but also provides an appropriate way of
finding approximate solutions of functional equations of the form Ax = y.
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157
0021-9045/93 $5.00

Copyright It 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



158 SEN-YEN SHAW

Working within this framework we now intend to equip ergodic limits and
approximate solutions with an order of approximation. The general result
is stated in Section 2 and proved in Section 3. Applications to particular
examples, such as integrated semigroups, cosine operator functions, and
tensor product semigroups, are then included in Section 4.

2. MAIN RESULTS

To begin with we state the abstract mean ergodic theorem as follows.
Let X be a Banach space and B(X) be the Banach algebra of all bounded

linear operators on X. Let A: D(A) eX -+ X be a closed linear operator,
and let {A,} and {B,} be two nets in B(X) satisfying:

(Cl) IIA, II ~ M for all ct;
(C2) R(B,)cD(A) and B,A cAB,=/-A, for alia;

(C3) R(A,) c D(A) for alia, and IIAA, II = O(e(a)) with lim, e(a) = O.

(C4) B;x* = cp(a) x* for all x* E R(A)-l, and Icp(a)l-+ 00.

Note that (C2) implies A,AcAA, for alia. The function e(a) in (C3)
is to act as an estimator of the convergence rates of {A,x} and {B,y},
approximating respectively the ergodic limit and the solution of Ax = y, in
practical applications. The assumption (C4) plays a key role in the proof
of our theorems and prevails among practical examples.

The abstract mean ergodic theorem for the systems {A,} and {B,} is
proved in [12, Thm. 1.1, Coro. 1.4, and Remark 1.7]. For reference we
state it in the following.

THEOREM A. LetA, {A,}, and {B,} be as assumed above.

(i) The set D(P) of all x E X for which the limit Px:= lim, A,x
exists is precisely equal to N(A) EB R(A ), which is a closed linear subspace of
X, and the operator P thus defined is a hounded linear projection with the
range R(P)=N(A) and the null space N(P)=R(A).

(ii) The set D(B) of all y EX for which the limit By := lim, B,y exists
is precisely equal to A(D(A)nR(A)), and By is the unique solution of the
functional equation Ax = y in R(A ); in other words, the operator B thus
defined is the inverse operator A ~ I of the restriction Al := A I R(A) of A to
R(A ), which is a closed operator with range R(B) = D(A I) = D(A) n R(A ),
and domain D(B) = R(A I) = A(D(A) n R(A)).

(iii) D(P) = X if and only if D(B) = R(A). These two identities hold in
particular when X is reflexive.
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Let Xo:=D(P)=N(A)Ef:)R(A) and XI :=R(A). Since the operator
B: D(B) C XI -+ Xl is closed, its domain D(B) (= R(A I) is a Banach space
with respect to the norm IIx II B := IIx II + IW'" II. The completion of D(B)
relative to Xl> denoted by [D(B)];:, (= [R(A I )];:.), is the set of all those
y E X I for which there exist a sequence {y n } C D(B) and a constant K> 0
such that llYn II B ~ K for all n and II y" - y II -+ O. Using it, we try to charac
terize the Favard (or saturation) classes for the two processes {A,} and
{B, }.

THEOREM 1. Let the hypotheses of Theorem A be satisfied. Then for
yE X we have:

(1) lfIIB,yll=o(1), theny=O.

(2) IIB,yll=O(I) if and only ifYE[R(Ad];•.

THEOREM 2. Let A be a closed operator and {A,} and {B,} be two nets
in B(X) which satisfy conditions (Cl HC4) and the condition:

(C5) IIA,YII = O(e(IX») Crespo o(e(IX))] implies IIB,yll = 0(1) Crespo
0(1 )].

Then the following are true:

(1) For XEXo one has IIA,x-Pxll =o(e(IX)) if and only ifxEN(A).

(2) For XEXo one has IIA,x-PxlI=O(e(IX» if and only if
x E N(A) Ef:) [R(A 1)];:"

(3) IfYER(A I) and IIB,y-A~IYII=o(e(IX»), then y=O.

(4) For yER(Ad one has IIB,y-A.-Iyll =O(e(IX») if and only if
A ~ ly E [R(A d];:., or equivalently, y E A(D(A) n [R(A dl;).

When {A,} is mean ergodic, i.e., D(P)=X, by (iii) of Theorem A we
have R(Ad = D(B) = R(A). When X is reflexive one even has [R(A d];, =
[D(B)];, = D(B) = R(A). This follows from the weak closedness of Band
weak sequential precompactness of bounded sets in a reflexive space.
(cr. also Coro. 1.8 of [12]).

In [13, Thm. 2], it has been proved that if X = L I (J1.) with J1. a a-finite
measure, and if {A,,} and {B,} satisfy (Cl) with M= 1, (C2), (C3), and
(C4), then IIB"YII = 0(1) is equivalent to yE R(A). From this and (2) of
Theorem 1, we infer that [R(Ad];. is identical to R(A) in this case too.
Thus we can formulate the following corollary.

COROLLARY 3. If, in addition to the hypotheses of Theorem 2, it is
assumed that X is a reflexive Banach space [resp. X = L 1(J1.) v.'ith J1. a a-finite
measure and A,,'s are contractions], then the following assertions hold:

640/7512-4
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(1) For XEX Crespo XEXo] one has IIA,x-PxlI =O(e(a)) ifand
only if x E N(A) EB R(A).

(2) IIB,yll = O( I) if and only if y E R(A).

(3) For YER(A) one has IIB,y-A11YII=0(e(a)) if and only if
y E R(A 2

).

Remark. It is worthwhile mentioning that if A has closed range, then
one has IIA, - PII = O(e(a»), liB, I R(A )11 = 0(1), and liB, I R(A) - A I-III =
O(e(ct)), no matter whether X is reflexive or not. Actually, these four
conditions are equivalent to each other (see [10]).

3. PROOFS

Proof of Theorem 1. (1) is an obvious consequence of (ii) of
Theorem A.

To prove (2), we first suppose yEX be such that IIB,yll =0(1). Put
J, := I - A,. Since for every x* E R(A)-1 we have, by (C4),

IIB,yllllx*11 ~ I<B,y, x*)1 = I<Y, B:x*)1 = 1<p(x)ll<y, x*)I,

the boundedness of {B,y} and the assumption: 1<p(a)1 --+ 00 imply that
<y,x*)=O. Hence yE-1(R(A)-1)=R(A) (=Xd and so IIJ,y-yll=
IIA,yll--+ IIPyli =0, by (i) of Theorem A. Moreover, by (C2) and
TheoremA(ii) one sees that B,YED(A)nR{A), J,y=AB,YEA(D(A)n
R(A )) = D(B), and BJ,y = BAB,y = B,y. Hence we have

lIJ,yIIB= IIJ,yll + IIBJ,yll = Ily-A,yll + IIB,yll

~ (I + II A , II) II y II + II B, y II = O( 1).

This shows that y belongs to [D(B)];, = [R(Ad];,.
Conversely, if yE [D(B)];" there exists a sequence {y,,} in D(B) such

that II.F" II B ~ K for all n and II y" - y II --+ O. It follows by (ii) of Theorem A,
(C2), and (CI) that

IIB,y" II = IIB,ABy" II = 11(1- A,) By" II ~ (1 + IIA, II) II By" II

~ (1 + II A, II) II y" II B ~ (I + II A, II) K = 0(1 ).

Passing to the limit we obtain that IIB,yll =0(1).

Proof of Theorem 2. Since every x in Xo has a unique representation
x = y + Z with y E R(A) and Z E N(A), by (C2) and (i) of Theorem A one
has A,z=z=Px so that A,x-Px=A,y. If IIA,x-Pxll =o(e(a» Crespo
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O(e(a»J, then by (C5) one has 1/ B,yl/ = o( I) [resp. O( I)]. Then (I) [resp.
(2)] of Theorem 1 implies that y = 0 [resp. y E [R( AdJ;,]. This proves the
"only if" parts of assertions (1) and (2). The "if" part of (1) follows from
(i) of Theorem A and (C2).

To show the "if" part of (2), let yE [R(AdJ;, = [D(B)];, and let {y,,}
be a sequence in D(B) such that II Y" II B ~ K for all n and II y" - y II -+ O.
Then we have

IIA,y" II = IIA,ABy" II = IIAA,By" II ~ I!AA, II IIBy" II

~ IIAA,lllly"IIB~ IIAA,II K,

and hence IIA,yll~IIAA,IIK=O(e(a». Therefore, if xEN(A)EB
[R(AdJ;" then IIA,x-Pxll = IIA,yll =O(e(IX»).

Finally, since application of (e2) and (ii) of Theorem A yields

B,y- By = B,ABy- By= (B,A - I) By = -A,By

for YED(B), if yER(A 1) (cR(A» and IIB,y-A;-IYII=o(e(a»), then if
follows from (I) that Ai1YEN(A). Thus A;lyEN(A)nR(A)= {O} and
hence y = O. This proves (3). Similarly, assertion (4) follows from (2).

4. EXAMPLES

4.1. Abelian Ergodic Theorem with Rates

Let A be a closed operator such that 0 E p(A) and such that
1l1{A-A)-III=O(I)(1-+0,).Ep(A». Set A;:=l(1.-A) I and B;.:=
- U. - A) - I, .Ie E p(A). Clearly {A;.} and {BJ satisfy conditions
(CIHC5), with e(1)=111-+0 and <,0(1)=).-1-+ 00 as 1-+0 (cf.
[12, Ex. V]). Then it follows from Theorem A that N( A) n R( A) = {O},
and Xo = N(A) EB R(A) is a closed subspace of X. Let P be the projection
onto N(A) parallel to R(A ), and let A I := A I R(A ). The following theorem
follows from Theorem 1 and 2 immediately.

THEOREM 4. Let A be a closed operator such that 0 E p(A) and
II J.u. - A ) - I II = O( 1)(J. -+ 0). Then the following are true:

(I) For XEXo, one has 1I1(J.-A)-1 x-Pxll =0(1J.1){A-+0) if and
only if x E N(A).

(2) For XEXo, one has 111{A-A)-lx-Pxll=O(!11)().-+0) if and
only if XE N(A)EB [R(Ad];,.

(3) If II(l-A)-1 YII =0(1)(J.-+0), then y=O.
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(4) II(A. - A)-I YII = 0(1 )(). -+ 0) if and only ify E [R(A d];,.
(5) IfYEA(D(A)n R(A)) and II(A.-A)-' y+A,-'YIl =0(1A.1)(A.~0),

then y=O.

(6) For YEA(D(A)nR(A)), one has II(A.-A) I y+A 1 'yll =
0(1).1)(,1-+0) if and only ifYEA[D(A)n [R(Ad];,].

4.2. n- Times Integrated Semigroups

A Co-semigroup of operators in B(X) is called a O-times integrated semi
group, and for n>O a strongly continuous family {T(t); t~O} in B(X) is
called an n-times integrated semigroup (cf. [1,5,7-9, 16J) if T(O)=O and

T( t) T( s) = 1), (J I +., - JI - J") (t + s - r)"- I T( r) dr
(n - 1. a a a

(s, t ~ 0).

If T( . ) is exponentially bounded, i.e., there are M ~ 0 and WE R such that
II T(t)11 :s;; Me'" for all t ~ 0, and if it is nondegenerate in the sense that x = 0
whenever T(t) x = 0 for all t > 0, then there exists a unique closed
operator A satisfying (w, CXl) c p(A) and (A. - A) I X = J;{' An e - A'T(t) x dt
for all x E X and A. > w. This operator A is called the generator of T(· ); it
is not necessarily densely defined.

LetA,:=(n+l)!t" 'J~T(s)dsandB,:=-(n+1)!t" 'xJ~J;)T(u)

duds for t>O. If IIT(t)II=O(t")(t~CXl), then {A,} and {B,} satisfy
conditions (Cl)-(C4), with e(t)=t- I and qJ(t) = -t/(n+2) (cr. [13,14]).
One can also easily verify that II A, y II = O( t - I) [resp. o( t - 1)] implies
IIB,yl1 =0(1) Crespo 0(1)]. That is, (C5) is satisfied. Hence Theorems A, 1,
and 2 can be applied to {A,} and {H,}. On the other hand, the assumption
II T(t)1I :s;; Mt n

, t ~ 0, implies that the generator A satisfies (0, CXl) c p(A) and
II AU - A ) - I II = O( 1)(). -+ 0 +) so that Theorem 4 works.

Strong and uniform ergodic theorems for T(·) have been given in [14].
The following theorem is about the convergence rates of ergodic limits and
of approximate solutions of Ax = y; it follows from Theorems 1, 2, and 4.

THEOREM 5. Let {T( t); t ~ O} be a nondegenerate n-times integrated
semigroup with generator A, and suppose II T(t)1I :s;; Mtn for all t ~ O.

(1) If x E N(A) Ef) R(A ), the following assertions are equivalent:

(a) II(n + I)! t- n
-

1
J~ T(s) x ds - Pxll = O(1/t)(t ~ CXl),

(b) II AU - A ) - I X - Px II = O( A.)( A-+ 0 + ),

(c) xEN(A)Ef) [R(A1)J;,.

(2) For any y E X, the following assertions are equivalent:

(d) lit "-IJ~J~T(u)ydudsll=O(1)(t-+CXl),
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(e) II (). - A )- I Y II = O( 1)( A...... 0 + ),

(0 yE[R(A.)];J'

(3) ljYEA(D(A)nR(A)), the/ollowing assertions are equivalent:

(g) II(n+l)!t-"-lggT(u)Yduds+A,ly ll=O(l/t)(t ...... oo),

(h) II (). - A) - I Y + A 1- Iy II = O().)()....... 0 + ),

(i) YEA(D(A)n [R(A1)];J

Remarks. (I) There are generators of n-times integrated semigroups of
order O(t"), that do not generate semigroups of class (Co), For example,
the Laplacian on U(R) (I ~ P ~ 00) [7].

(II) When n = 0, parts (1) and (2) of Theorem 5 reduce to Butzer
and Dickmeis' result [2] on (Co)-semigroups. Similar application of
Theorems 1 and 2 to discrete semigroups (cf. [12, Ex. II]) will reproduce
the cited result of Butzer and Westphal [3].

4.3. Cosine Operator Functions

A strongly continuous family {C( t); t ~ O} in B( X) is called a cosine
operator function if C(O) = I and C(t + s) + C(t - s) = 2C(t) C(s), t ~ S ~ 0
(cf. [6,15]). The generator A, defined by Ax:=lim,~o' 2t- 2(C(t)-f)x,
is a densely defined closed operator. Suppose that II C( t) II ~ M for all t ~ O.
Then (0, 00) c p(A) and

A(),2_A)-1 X= fX e--;-'C(t)xdt
o

(xEX,2>0).

Thus 11),(2 - A) -III ~ M for), > 0 so that Theorem 4 can be applied.
For t >0 let

A, := 2t- 2 ( (C(u) du ds

and

I' IS IU IVBr := -2t- 2 C(w) dv.' dv du ds.
o 0 0 0

Then we have BrA c ABr= 1- A r and AA r= 2t- 2(C(t) -l), so that condi
tions (C 1)--(C4) are satisfied with e( t) = t - 2 and cp(t) = t 2

/ 12. It is also easy
to check that IIB,YII=O(l) whenever IIA,YII=0(t-2)(t ...... 00), i.e., (C5)
holds.

Strong convergence and uniform convergence of {A,x} and {B,y} as
t ...... oo have been discussed in [12,p.440] and [14, Thm.6], respectively.
The convergence rates are estimated in the following theorem, which is a
specialization of Theorems I, 2, and 4.
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THEOREM 6. Let {C( t); t ;?; 0] he a uniformly bounded cosine operator
function with generator A. We have:

(1) If x E N(A) EB R(A ), the following assertions are equivalent:

(a) IIA,x-Pxll =0(I/t2 )(t-+ oc),

(b) II).(). - A) -1 X - Pxll = O()')()' -+ 0+),

(c) xEN(A)Ef) [R(Adl;,·

(2) For given y E X, the following assertions are equivalent:

(d) IIB,ylI = O(I)(t -+ -ex;),

(e) II().-A)-I YII =O(I)().-+O+),

(f) YE[R(Adl;,.

(3) If yEA (D( A) n R( A)), the following assertions are equivalent:

(g) I\Bty - A \Iy \\ = 00/t2 )(t -+ oc),

(h) 1I(A.-A)-l y +A t 'YII=O(A)().-..O+),

(i) YEA(D(A)n[R(AdE).

4.4. Tensor Product Semigroups

For i = 1,2, let Xi be a Banach space and {Ti(t); t;?; O} c B(XJ be a
(Co)-semigroup with the infinitesimal generator Ai' Suppose II T j (t)1I ~
M/"t, t;?; 0, i = 1,2. The family {S(t); t?: O} of operators on B(X2 , Xd,
defined by S(t) E= T1(t) ET2(t)(EE B(X2 , XIl), is a semigroup in
B(B(X2 , XIl), and is called the tensor product semigroup of T t(·) and
T 2 ( .). The generator A of S(·), defined by the strong operator limit
A E :=so -lim t ~ 0 + t - I (S( t) E - E), is closed and densely defined relative
to the strong (and also the weak) operator topology; it is precisely the
operator which has as its domain the set of all those EE B(X2 , XI) for
which ED( A 2) c D( A I) and A IE + EA 2 is bounded on D( A 2), and sends
each such E to A I E + EA 2 • For A> WI + w 2 , A. - A is invertible and

()'-A)-I Ex=r e-i"(S(t)E)xdt

(cf. [10-12,9J). If WI+11'2~0, then (O,oo)cp(LJ) and II)'()'-LJ)-III~

M 1M2 for all ? > 0, so that Theorem 4 can be applied to A.
For t > 0 define the operators At and B t by
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(B,E) x:= -t- I rr(S(u) E) x du ds = -t- I f' fS T 1(u) ET2(u) x du ds
o 0 0 0

for EEB(X2,Xd and XEX2. It is known [12J that B,AcAB,=
t '(T(t)-I), and A,AcAA,=t- ' (S(t)-1), and B:x*=(-1/2)tx* for
x*ER(A)-L. Thus if »'I+W2~0, then {A,L {B , } satisfy conditions
(CI)-(C5), with e(t)=r I and <p(t)=(-1/2)t.

A mean ergodic theorem for S(·) is proved in [10J, and the approximate
solution of the operator equation A I E + EA 2 = F is studied in [II, 12]. We
now apply Theorems 1,2, and 4 to give rates of convergence for ergodic
limits and approximate solutions.

THEOREM 7. Suppose that wJ+w2~1, and let I7:N(A)EBR(A)--+N(A)
be the projection with R(I7)=N(A) and N(I7)=R(A), where the overbar
denotes the uniform operator closure. We have:

(I) If E E N(A) EB R(A ), the following assertions are equivalent:

(a) Iit- ' J~ TI(s) £T2(s) ds-I7£11 = OO/t)(t --+ (0),

(b) 11,i,(A-A)-' £-17£11 =O(A)(A--+O+),

(c) EE N(A)EB [A(D(A) n R(A»J;(Ll)'

(2) For given FE B(X2, Xd the following assertions are equivalent:

(d) II t - I J~ J~ T J(u) FT2(u) du dsll = O( 1)( t --+ 00' ),

(e) II (A - A) - I F II = 00 )U --+ 0 + ),

(f) FE [A(D(A)nR(A»J;(Ll)'

(3) If FE A(D(A) n R(A», the following assertions are equivalent:

(g) IIt-JJ~J~TJ(u)FT2(u)duds+(AIR(AWJFII=00/t)(t--+<XJ),

(h) II(A-A)-I F+ (AI R(A>r JFII =OU)(}.--+O+),

(i) FEA{D(A)n [A(D(A)nR(A»];(Ll)}'

Remarks. (l) It is known that if XI is reflexive, then (d) is equivalent
to FE R( A) (see [11, Coro. 3.6J). Hence in this case the set [A (D( A) n
R(A»J;(Ll) is identical to R(A), so that (c) can be replaced by (c ' ):
EEN(A)EBR(A), and (i) can be replaced by (i ' ): FER(A 2).

(II) We know [10, II J that a tensor product semigroup is just a
(Y)-semigroup on B(X2 , Xl) for some suitable subspace Y of (B(X2 , XI) )*.
The same argument as above will lead to a similar theorem for
Y-semigroups, whose formulation is like the n =0 case of Theorem 5.
Furthermore, because the integral of a Y-semigroup becomes a once
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integrated semigroup (see [14, p. 410] and also [9, p. 1S3] for Ll being
the generator of a once integrated semigroup), one can apply Theorem S,
case n = 1, to obtain rates for (C, 2)-means of a (Y)-semigroup, and
particularly, of a tensor product semigroup.
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